
Macro and SVC Services Guide

Automated Software Tools Corporation

Function Table and links
Supporting Macros and links
Time periods
Event Control Block
Change Summary
Acknowledgements
Trademarks
Credits

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

Function Table

 SVC FUNCTION
DEC HEX
 1 01 WAIT
 2 02 POST
 11 0B TIME (and date)
 11 0B GETIME (VSE)
 40 28 GETENV
 46 2E TTIMER
 47 2F STIMER
 52 34 CMDPROC
 53 35 WTO
103 67 XLATE
160 A0 WTOR
170 AA CTD
171 AB CFD
172 AC SYSTRACE

Supporting Macros

COMRG Address Communications region (VSE)

Time periods

mS milliseconds 0.001 seconds (one thousandth)
uS microseconds 0.000001 seconds (one millionth)
nS nanoseconds 0.000000001 seconds (one billionth)

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

Event Control Block

There is no macro or DSECT describing it, I thought a little doc might be useful.

Bits 0-1
 00 The initial state, WAIT requires both these bits to be zero.
 10 After a Macro specifying an ECB is issued (eg. WTOR), this wait state is set.
 01 Set to this state internally or by the POST Macro indicates that the event is
 complete or that the task in a wait state is to be resumed. It is valid to test for this
 state using a bit test instruction like TM.
 11 Invalid.

Bits 2-31
 Completion code, set internally or by the POST Macro.

TIME (and date)

 name TIME type,addr,LINKAGE=,DATETYPE=,CLOCKTYPE=
 Obtain the time and/or date in various formats.

 Formats--part 1...LINKAGE=SVC (default)
 name TIME
 --or--
 name TIME DEC
 Returns: Time in GR0 as HHMMSSTH
 Hours, mins and secs to 2 decimal places.
 The values are unsigned packed decimal: eg. X'21420654' = 21:42:06.54
 The MVO instruction can be used after storing the register to convert it to
 standard packed decimal format.

 Date in GR1 as CCYYDDDF
 Century, year, day number and sign
 The values are signed decimal:
 CC is (almost) the century number.
 YY the year number.
 DDD the day number within the year.
 F the positive sign.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 eg. X'0106003F' = 3rd January 2006
 After storing, AP DATE,=P'1900000' can be used to convert to a 4-digit year.

 name TIME BIN
 Returns: Time in GR0 in hundredths of a second since midnight in binary.
 Date in GR1 as above.

 name TIME TU
 Returns: Time in GR0 in timer units of 26.04166uS since midnight in binary.
 Date in GR1 as above.

 name TIME INS
 Returns: Instruction count in GR1 (64 bit value).

 name TIME MIC,label
 --or--
 name TIME MIC,(reg)
 Returns: Time in units of 1uS in binary since midnight.
 The time is stored at the 8 bytes specified.
 Date in GR1 as above.

 name TIME NS,label
 --or--
 name TIME NS,(reg)
 Returns: Time in units of 1nS in binary since midnight.
 The time is stored at the 8 bytes specified.

 name TIME STCK,label
 --or--
 name TIME STCK,(reg)
 Returns: Time in units of 1uS in binary since midnight.
 The time is stored at the 8 bytes specified and uses only bits 0-51 of the
 8-byte field.
 Date in GR1 as above.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 name TIME TS,label
 --or--
 name TIME TS,(reg)
 Returns: A string of 29 bytes at the label or pointed to by reg.
 The format is "YYYY-MM-DD HH:MM:SS.NNNNNNNNN".

 name TIME CLOCK,label,CLOCKTYPE=STCK
 --or--
 name TIME CLOCK,(reg),CLOCKTYPE=STCK
 Returns: Time in units of 1uS in binary since 1st January 1900.
 The time is stored at the 8 bytes specified and
 uses only bits 0-51 of the 8-byte field.

 name TIME CLOCK,label,CLOCKTYPE=STCKE
 --or--
 name TIME CLOCK,(reg),CLOCKTYPE=STCKE
 Returns: Time in units of 1uS in binary since 1st January 1900.
 The time is stored at the 16 bytes specified:
 Byte 0 : Zero
 Bytes 1-13 : The time
 Bytes 14-15 : Programmable field set by the SCKPF instruction and not
 currently implemented.

 The time uses only bits 8-111 of the 16-byte field
 with bits 8-59 being the value in microseconds.

 name TIME CLOCK,label,CLOCKTYPE=JAVA
 --or--
 name TIME CLOCK,(reg),CLOCKTYPE=JAVA
 Returns: Time in units of 1mS in binary since 1st January 1970.
 The time is stored at the 8 bytes specified.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 Formats--part 2...LINKAGE=SYSTEM,DATETYPE=

 DATETYPE can be set for any of the formats below.
 All the formats are 4 bytes and the values are unsigned packed decimal.
 The MVO instruction can be used to convert it to standard packed decimal format.
 YYYY the year number.
 DDD the day number within the year.
 DD the day number within the month.
 MM the month number.

 YYYYDDD (default) stored as 0YYYYDDD
 MMDDYYYY
 DDMMYYYY
 YYYYMMDD

 name TIME ,label,LINKAGE=SYSTEM
 --or--
 name TIME ,(reg),LINKAGE=SYSTEM
 --or--
 name TIME DEC,label,LINKAGE=SYSTEM
 --or--
 name TIME DEC,(reg),LINKAGE=SYSTEM
 Returns: Time as HHMMSSTH
 The time is stored at the 4 bytes specified.
 Hours, mins and secs to 2 decimal places.
 The values are unsigned packed decimal:
 eg. X'21420654' = 21:42:06.54
 The MVO instruction can be used to convert
 it to standard packed decimal format.

 The date is stored at label+8 or 8(reg).

 name TIME BIN,label,LINKAGE=SYSTEM
 --or--
 name TIME BIN,(reg),LINKAGE=SYSTEM
 Returns: The time is stored at the 4 bytes specified in hundredths of a second since
 midnight

 The date is stored at label+8 or 8(reg).

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 name TIME MIC,label,LINKAGE=SYSTEM
 --or--
 name TIME MIC,(reg),LINKAGE=SYSTEM
 Returns: Time in units of 1uS in binary since midnight.
 The time is stored at the 8 bytes specified.

 The date is stored at label+8 or 8(reg).

 name TIME STCK,label.LINKAGE=SYSTEM
 --or--
 name TIME STCK,(reg),LINKAGE=SYSTEM
 Returns: Time in units of 1uS in binary since midnight.
 The time is stored at the 8 bytes specified and uses only bits 0-51 of the
 8-byte field.

 The date is stored at label+8 or 8(reg).

 name TIME STCKE,label.LINKAGE=SYSTEM
 --or--
 name TIME STCKE,(reg),LINKAGE=SYSTEM
 Returns: Time in units of 1uS in binary since midnight.
 The time is stored at the 16 bytes specified:
 Byte 0 : Zero
 Bytes 1-13 : The time
 Bytes 14-15 : Programmable field set by the SCKPF instruction and not
 currently implemented.

 The time uses only bits 8-111 of the 16-byte field
 with bits 8-59 being the value in microseconds.

 Note: The DATETYPE parameter is ignored.

 Register Usage:
 R0 = Code for units and date type
 R1 = Result area

 GR15 has a return code:
 0 TIME ok
 4 Invalid request

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

GETIME type
 Obtain the time in various formats (VSE only).

 type
 STANDARD (default)
 Returns: Time in GR1 as 0HHMMSSc
 Hours, mins and secs in packed format.

 BIN
 Returns: Time in GR1 in seconds since midnight in binary.

 TU
 Returns: Time in GR1 in timer units of 26.04166uS since midnight in binary.

 MIC
 Returns: Time in units of 1uS in binary since midnight.
 The time is stored in the GR0/GR1 register pair.

 GR15 has a return code:
 0 GETIME ok
 4 Invalid request

STIMER

 a) Wait for an interval of time.

 name STIMER WAIT,BINTVL=label
 name STIMER WAIT,DINTVL=label
 name STIMER WAIT,MICVL=label
 name STIMER WAIT,TUINTVL=label

 b) Start a timer and continue.
 When the time expires the exit routine is invoked.

 name STIMER REAL,exit,BINTVL=label
 name STIMER REAL,exit,DINTVL=label
 name STIMER REAL,exit,MICVL=label
 name STIMER REAL,exit,TUINTVL=label

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 Only one STIMER can be waiting for expiry at any moment.

 In each case the label points to a number of timer units.
 BINTVL is a fullword with 100th of a second units.
 Maximum value of X'7FFFFFFF' is approx. 249 days.
 DINTVL is a doubleword PL8'HHMMSSth', where th is 2 decimal positions of seconds.
 Maximum value of 99595999 is approx. 4 days.
 MICVL is a doubleword with microsecond units.
 Maximum value of X'7FFFFFFFFFFFFFFF' is nearly 300,000 years !
 TUINTVL is a fullword with 26.04166uS units.
 Maximum value of X'7FFFFFFF' is approx. 16 hours.

 exit
 Can be label or (reg).
 When the time expires, the exit routine is invoked.
 GR15 has the address of the exit routine.
 Other registers must be assumed to be destroyed.

 Note: STIMER REAL is measuring clock time, and not the time that
 the z390 program is executing.

 Register Usage:
 R0 = Code for timer units and exit address
 R1 = Address of the timer units
 R15 = By implication, exit routine address

TTIMER

 Test or cancel a previously set STIMER REAL

 name TTIMER cancel,type,addr

 cancel is optional
 CANCEL means that the STIMER timing is terminated.

 type is optional
 TU (default) returns the remaining time in GR0 as 4 bytes
 in timer units of 26.04166uS. addr is ignored.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 MIC,addr
 Using MIC requires addr which may be specified as label or
 (reg). The remaining time is returned at the doubleword addr in microseconds.

 Example 1:
 Cancel the current STIMER REAL, return the remaining time in GR0 in timer units.
 TTIMER CANCEL

 Example 2:
 Return the remaining time in microseconds at REMAIN.
 TTIMER ,MIC,REMAIN
 ...
 REMAIN DS D

 Register Usage:
 R0 = Code for timer units, returned value
 R1 = Address of returned timer units

 GR15 has a return code:
 0 TTIMER ok
 4 TU units remaining exceed 31 bits

CMDPROC

 Open, close, read and write from a command processor.

 The command processor has also been called a DOS window or
 Command Prompt.

 With the CMDPROC macro, you can issue commands like CD or DIR,
 receive the replies from those commands line by line and start
 other programs.

 There is a limit of 10 command processors that can be open at
 any time. The limit is only to protect the operating system
 (eg. Windows) from storage depletion.

 In all cases below, ID may be defined as a numeric value or in a
 general register. ie. ID=2 or ID=(R5).

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 ID may range from 0 (default) to 9.
 If the ID exceeds 9 then an abend SFFF will occur

 name CMDPROC START,ID=,CMDLOG=
 Open a command processor and assign an identifier.

 CMDLOG=YES (Default)
 All output from the command processor is written to the log.

 CMDLOG=NO
 All output is saved in a memory queue. Use this option if you intend to use
 CMDPROC READ to retrieve command processor messages.

 If the memory queue exceeds the MAXQUE value (default 1000)
 then the memory queue is written to the log and CMDPROC=YES
 is assumed. An error message is generated.

 name CMDPROC STOP,ID=
 Close a previously opened command processor.

 name CMDPROC WRITE,label,ID=
 --or--
 name CMDPROC WRITE,literal,ID=
 --or--
 name CMDPROC WRITE,(reg),ID=
 Send a command to a previously opened command processor.

 label or (reg) points to a constant which terminates with X'00'
 or be defined as a double-quoted string within a standard C-type constant.

 literal is a double-quoted string within a standard C-type constant preceded by an
 equals sign.

 eg. using label
 name CMDPROC WRITE,CMD1,ID=5
 ...
 CMD1 DC C'DIR /X',X'00'
 --or--
 CMD1 DC C'"DIR /X"'

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 eg. using literal
 name CMDPROC WRITE,=C'"DIR /X"',ID=5

 name CMDPROC READ,label,len,ID=,WAIT=
 Obtain the output, a line at a time, from the result of
 a command issued by CMDPROC WRITE from a previously
 opened command processor.

 label is the receiving area and may be specified as (reg).

 If len is specified it determines the maximum length that is passed to your program.
 The default is the implied length of the receiving field.
 Maximum value is 4095 bytes.

 len may be specified as (reg).
 Maximum value is 2G bytes.

 If label is specified as (reg), then len is mandatory.
 WAIT (default 500) is the time in milliseconds before the READ will terminate if no
 output from the command processor is available to be read.
 Maximum value is 4094 (4 seconds).
 A value of 4095 means wait indefinitely.

 WAIT may be specified as (reg).
 Maximum value is X'7FFFFFFF' (about 24 days).

 Register Usage:
 R0 = Operation code and ID
 R1 = Command area
 R2 = Length
 R3 = Wait value
 R15 = Formation of ID and return code

 GR15 has a return code:
 0 = CMDPROC ok
 4 = READ terminated as WAIT time has expired
 8 = READ terminated because the command processor has ended
 16 = Command Processor abnormally ended (see log message)

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

WTO

 Display a message on the GUI console.

 The record descriptor word (RDW) defines the variable length
 text message generated by the WTO macro.
 eg.
 DC AL2(len,0),C'text'
 len includes the 4 bytes for the RDW.

 Formats:
 name WTO 'text'
 The RDW that describes the message is generated internally.

 name WTO 'text',MF=L (list form)
 No text is written to the console, only the RDW is generated.
 This allows a 'collection' of messages to be constructed which can be used by the
 execute form.
 name WTO MF=E (execute form 1)
 GR1 must be preloaded with the address of an RDW previously
 generated with the list form of WTO.

 name WTO MF=(E,label) (execute form 2)
 --or--
 name WTO MF=(E,(reg)) (execute form 2)
 label or (reg) points to an RDW previously generated with the list form of the WTO.

 Register Usage:
 R1 = Branch around RDW or parm pointer

XLATE

 Translates data to EBCDIC or ASCII.

 name XLATE area,len,TO=

 area may be specified as label or (reg).

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 len may be specified as a number or (reg).
 Maximum numeric value is 4095 bytes.
 Maximum register value is 2G bytes.

 TO=A convert area to ASCII.
 TO=E convert area to EBCDIC.

 Register Usage:
 R0 = Area address and codes
 R1 = Length

WTOR

 Display a message on the GUI console and receive a response.

 name WTOR 'text',reply,len,ecb,MF=
 --or--
 name WTOR "text",reply,len,ecb,MF=
 The RDW (see WTO) that describes the message is generated internally.
 The text appears on the console.

 reply
 specified as label or (reg), is the field into which the
 reply is put. The reply appears on the console.

 len
 Maximum length of reply.
 If reply is specified as (reg) then len is mandatory.
 If len is omitted, then the implied length of reply is used.

 ecb
 specified as label or (reg), by convention defined as DC F'0'.

 After the WTOR macro, instruction execution can proceed until
 the reply is completed by the user (commonly the Return key).

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 MF=
 Default is MF=I.
 Specify MF=L to just construct the parameter list
 Specify MF=(E,addr) or (E,(reg)) to execute the WTOR with a previously generated
 parameter list.

 Example 1:
 Implied length, named ECB, wait for reply immediately...

 WTOR 'Enter your name',NAME,,MYECB
 WAIT ECB=MYECB
 ...
 NAME DC CL40' '
 MYECB DC F'0'

 Example 2:
 Register notation, maximum length, no wait for reply...

 LA R5,NAME
 LA R6,MYECB
 WTOR 'Enter your name',(R5),40,(R6)
 ... other processing
 TM MYECB,X'40'
 BO GOTREPLY
 ...
 NAME DC CL40' '
 MYECB DC F'0'

 Register Usage:
 R0 = Reply address
 R1 = Branch around RDW
 R14 = Reply length
 R15 = ECB address

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

WAIT

 a) Wait for one ECB completion.
 name WAIT num,ECB=

 b) Wait for one or more ECB completions.
 name WAIT num,ECBLIST=

 ECB or ECBLIST must be specified.

 num is optional and defaults to 1
 For ECB= num must be 1 or omitted.

 For ECBLIST= num is the minimum number of ECBs that must be posted before the
 WAIT is complete. This value must, of course, be less or equal to the number of
 ECBs in the list. An abend SF05 will occur if this is not the case.

 ECB=
 Specified as label or (reg).
 The location of a single 4-byte ECB.

 ECBLIST=
 Specified as label or (reg).
 The location of a sequence of 4-byte addresses, each of which
 points to a 4-byte ECB. The last 4-byte address must have bit 0 set to 1.

 Note: For DECBs, use the CHECK macro rather than WAIT, otherwise
 error routines may not be correctly invoked.

 Example:
 Wait for 2 out of 3 ECBs.
 WAIT 2,ECBLIST
 ...
 ECBLIST DC A(ECB1)
 DC A(ECB2)
 DC A(X'80000000'+ECB3)
 ECB1 DC F'0'
 ECB2 DC F'0'
 ECB3 DC F'0'

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 Register Usage:
 R0 = Number of ECBs
 R1 = ECB address

POST

 Signal the completion of one ECB.
 name POST ecb,code

 ecb is required
 Specified as label or (reg).
 The location of a single 4-byte ECB.

 code is optional and defaults to zero
 Specified as a value (eg. 14 or X'123') or as (reg).
 The completion code is placed in bits 2-31 of the ECB.

 Register Usage:
 R0 = Event completion code
 R1 = ECB address

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

CTD

 Convert a binary or floating point value to a printable format.

 name CTD type,IN=input,OUT=output,LINKAGE=

 type
 This is a numeric value which determines the operation to be
 carried out. Equates are automatically generated. The value of
 type also determines the length of the input field.
 type may be specified in a register eg. (R5).

Value Equate Length Description
 1 CTD_INT128 16 binary
 2 CTD_EH 4 short HFP
 3 CTD_EB 4 short BFP
 4 CTD_DH 8 long HFP
 5 CTD_DB 8 long BFP
 6 CTD_LH 16 extended HFP
 7 CTD_LB 16 extended BFP
 8 CTD_DD 8 long DFP
 9 CTD_ED 4 short DFP
10 CTD_LD 16 extended DFP

 IN=
 The input field may be specified as a literal eg. IN==DH'3.8',
 a label, a register pointer eg. IN=(R4) or a register eg. IN=R4

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 For some types, input from a register implies the use of a
 register pair as follows:

 value equate register specified
 1 CTD_INT128 Any even general register, input is from the even/odd pair
 2 CTD_EH)
 3 CTD_EB) Any
 4 CTD_DH) floating
 5 CTD_DB) point
 8 CTD_DD) register
 9 CTD_ED)

 6 CTD_LH) The first floating point register
 7 CTD_LB) of a valid pair, input is from the
 10 CTD_LD) the register pair.

 OUT=
 The output field may be specified as a label or a register
 pointer eg. OUT=(R4)

 The output field is always 45 bytes, and is initialised to
 blanks. Not all 45 bytes may be used.

 The output field will be ASCII if the ASCII option on
 CALL EZ390 is used, otherwise EBCDIC.

 The output field has the following format in this sequence...
 - If the value is negative
 n...n Digits preceding the decimal point
 If the value is less than 1 and there is no exponent, then 0 is output. eg. 0.04
 . Decimal point if there are decimal positions
 n...n Digits following the decimal point if the value is not a whole number
 E Indicates an exponent follows
 - Indicates a negative exponent
 nnnn The exponent value, 1-4 digits

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 Examples:
 zero 0
 root2 1.4142...
 -root2 -1.4142...
 50! 3.0414...E64
 2 power -50 8.8817...E-16

 LINKAGE=
 SVC (default) invokes SVC 170
 CALL generates a CALL to module FPCONMFC

 Register Usage:
 R0 = Parameter formation
 R1 = Parameter list
 R14 = Subroutine call
 R15 = Subroutine address and return code

 GR15 has a return code:
 0 CTD ok
 8 Invalid data address

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

CFD

 Convert a printable format number to a binary or floating point
 value.

 name CFD type,IN=input,OUT=output,LINKAGE=

 type
 This is a numeric value which determines the operation to be
 carried out. Equates are automatically generated. The value of
 type also determines the length of the output field.
 type may be specified in a register eg. (R5).

Value Equate Length Description
21 CFD_INT128 16 binary
22 CFD_EH 4 short HFP
23 CFD_EB 4 short BFP
24 CFD_DH 8 long HFP
25 CFD_DB 8 long BFP
26 CFD_LH 16 extended HFP
27 CFD_LB 16 extended BFP
28 CFD_DD 8 long DFP
29 CFD_ED 4 short DFP
30 CFD_LD 16 extended DFP

 IN=
 The input field may be specified as a label or a register
 pointer eg. (R4).

 The input field must be in ASCII if the ASCII option on
 CALL EZ390 is used, otherwise EBCDIC.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 The input field is always 45 bytes, and has the following format
 in this sequence...

 Optional preceding blanks
 +/- Valid sign
 n...n Digits preceding the decimal point
 . Decimal point if there are decimal positions
 n...n Digits following the decimal point if the value is not a whole number
 E Indicates an exponent follows
 - Indicates a negative exponent
 nnnn The exponent value, 1-4 digits

 For CFD_INT128 all correct forms are accepted and any decimal
 places are discarded eg. 129E-1 = 12.9 = 12

 OUT=
 The output field may be specified as a label, a register
 pointer eg. OUT=(R4) or a register eg. OUT=R4

 For some types, output to a register implies the use of a
 register pair as follows:

 Value Equate Register specified
 21 CFD_INT128 Any even general register, output is to the even/odd pair
 22 CFD_EH)
 23 CFD_EB) Any
 24 CFD_DH) floating
 25 CFD_DB) point
 28 CFD_DD) register
 29 CFD_ED)

 26 CFD_LH) The first floating point register
 27 CFD_LB) of a valid pair, output is to the
 30 CFD_LD) register pair.

 LINKAGE=
 SVC (default) invokes SVC 171
 CALL generates a CALL to module FPCONMFC

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

 Register Usage:
 R1 = Parameter list
 R14 = Subroutine call
 R15 = Subroutine address and return code

 GR15 has a return code:
 0 CFD ok
 8 Invalid data address
 12 invalid input data or number too large for format type

GETENV

 Get an environment variable.

 Environment variables are created using the SET statement in a
 batch process. eg. SET MYDATA=C:\MYDATA.TXT

 GETENV extracts the string in a program.

 name GETENV setname
 name GETENV (reg)

 setname is the label of a null terminated string or the string can
 be pointed to by reg.
 eg. SETNAME DC C'MYDATA',X'00'

 GETENV acquires a storage area for the variable and sets the
 address in GR2. The string is terminated with X'00'.

 Register Usage:
 R0 = Function code
 R1 = setname pointer
 R2 = Address of variable
 R15 = Return code

 GR15 has a return code:
 0 GETENV ok
 4 setname is null
 8 variable is null

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

SYSTRACE

 Turn on and off tracing options.

 SYSTRACE options

 If options are omitted, all tracing is turned off.
 The following options are allowed, others are ignored:
 E Instruction
 G GETMAIN/FREEMAIN
 Q QSAM I/O
 T TCPIO I/O
 V VSAM I/O

 eg. Turn on all traces except QSAM
 SYSTRACE EGTV

COMRG

 VSE only.
 Establish addressability to the Communications region in the ZCVT.

 COMRG REG=(reg)
 If REG is omitted it defaults to GR1.
 It is the users responsibility to provide a DSECT to map the
 COMRG.

 Register Usage:
 R1 = Address the ZCVT
 reg used in REG parm.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

Change Summary

June 10, 2011
 Added MF= to WTOR
 CMDPROC WAIT parameter has indefinite wait when 4095
 Added new SYSTRACE

November 23, 2008
 Update to CMDPROC return codes

June 27, 2008
 Added TIME INS

January 18, 2008
 Added maximum timer values to STIMER WAIT
 Minor correction to STIMER register usage
 Added abend and return code sections
 CMDPROC CMDLOG=YES/NO

September 28, 2007
 Added GETENV
 Added VSE Macros COMRG and GETIME
 Added TIME TS

July 10, 2007
 Correction to ID= and added abend SFFF to CMDPROC

March 8, 2007
 WTO corrections
 CMDPROC ID=(reg)
 All macros now list possible general register usage

Acknowledgements

Thanks to David Bond of Tachyon Software LLC for FPCONVRT on which
the CFD and CTD macros were based.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

Trademarks

IBM, CICS, VSAM and VSE are registered trademarks of International Business Machines
Corporation.

Credits

Author: Melvyn Maltz
Shipping date: June 10, 2011
z390 version : V1.5.04
zCICS version: V10

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

