
Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

z390 Service Oriented Architecture User Guide v1.5.06

Table of Contents

1. Introduction
2. z390 TCP/IP sockets support
3. z390 SOA application generation support
4. z390 demo SOA applications
5. References
6. Appendix

a. Demo application source code
b. Demo application execution log for statically linked base line
c. Demo SOA client application execution log
d. Demo SOA server application execution log
e. Demo SOA client server timing statistics

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

1. Introductions

The z390 Portable Mainframe Assembler open source project supports low level
Service Oriented Architecture (SOA) type application generation and execution.
The z390 macro TCPIO invoking svc x’7C’ supports TCP/IP sockets messaging
between client and server components. Any z390 assembler program can open up to
10 different client ports and 10 different server ports. The server ports can support
up to a total of 20 concurrent connections from other client programs. z390 client
and server programs can also interact with any other clients or server programs
written in any language supporting compatible messaging via TCP/IP sockets. Both
a COBOL and a z390 assembler version of the same client are now included. The
COBOL demo was successfully run on Windows using Micro Focus COBOL calling
z390 assembler services also running on Windows.

z390 includes an SOA directory with SOA generation macro library and a demo
application which can be generated and executed as either a classic statically linked
application or an SOA generated client server application using TCP/IP sockets.

The SOA demo application consists of a z390 mainframe assembler main program
DEMOMAIN.MLC and an equivalent COBOL version DEMOMAIN.CBL which
calls two subroutines DEMOSUB1.MLC and DEMOSUB2.MLC. DEMOSUB1
calculates the sum of two numbers with up to 34 digits in scientific notation using
extended decimal floating point. DEMOSUB2 calculates the sum of two 32 bit
integers.

To assemble, statically link, and execute the demo application run
soa\demo\demostd.bat. To generate, build, and execute the demo SOA application
with the client and server running on the same processor, run
soa\demo\demosoa.bat. The demo SOA application client and server can also be
run using two or more separate processors on a TCP/IP network. The application
generator supports both assembler and COBOL clients. Multiple copies of the
demo client can be concurrently run using the same demo server. The network can
be a local cable or wireless network with optional connections to other TCP/IP
networks over the Internet using Virtual Private Network (VPN) connections. See
Appendix V for statistics showing the timings from each of these network
configurations. The conclusion from timings is that the average overhead for
TCP/IP messaging is about 2-3 milli-seconds after initialization. This overhead is
negligible for services which also perform database I/O. The advantage of using the
SOA architecture is that services are more easily shared across diverse applications
and user networks and maintenance is simpler since server code does not need to be
statically linked into client application code.

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

2. z390 TCP/IP Sockets Support

The TCPIO macro operations OPEN, CLOSE, SEND, and RECEIVE support
messaging between client and server programs using TCP/IP sockets. Messages of
any length can be exchanges between any client and server programs on a TCP/IP
network. The server program must first open a socket port. Then up to 20
concurrent clients can open connections to any server port. The same program can
have up to 10 server ports and 10 client ports open. The macro commands are as
follows:

1. TCPIO OPEN,PORT=port,HOST=host

The port can be any standard port number less than 1024 or any private port
number above 1024. The port number can be numeric constant, symbolic
absolute value, or can be specified in (register). The only requirement is that
port numbers not conflict with other port numbers being used on the same
network with the same processor hosts. If the HOST= keyword parameter is
coded specifying a specific host IP address such as 162.692.1.3 or * for the
current processor, then a client port will be opened with a connection to the
server port on the indicated processor. If a connection to the specified server
port cannot be made, then a return code of 12 will be set. If the HOST=
parameter is omitted, then a server port will be opened on the current
processor which can handle up to 20 concurrent connections from client
ports on the network.

2. TCPIO CLOSE,PORT=port

Close the specified port. Note the same processor cannot open a client and
sever port with the same number so there is no need to indicate which type it
is. When a server port is closed, all associated port and connection threads
are also terminated. All ports are automatically closed at program
termination if not closed explicitly.

3. TCPIO SEND,PORT=port,MSG=addr,LMSG=length

Send the message with specified address and length to the specified port.
The message starting address can be RX type label or can be specified as
(register). The message length can be absolute value or (register). If the send
fails, a return code of 12 will be set.

4. TCPIO RECEIVE[,NOWAIT],PORT=port,MSG=addr,LMSG=max-length
 [,CONN=id]

Receive a message from the specified port starting at address with length up to max-
length. The message starting address can be RX type label or can be specified as
(register). The message maximum length can be absolute value or (register). If the

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

optional second positional parameter NOWAIT is specified, a return code of 4 will
be returned if no message is ready otherwise the RECEIVE will wait until at least 1
byte of the message is available. If the port is a server port then the optional
keyword parameter CONN=id may be specified indicating a specific connection that
was previously returned by prior TCPIO RECEIVE in register 2. If a CONN value
of -1 is specified or the parameter is omitted, the next message from any connection
will be returned along with the connection id in register 2. At least 1 byte will be
returned on a successful RECEIVE with return code 0 along with the number of
bytes returned in register 1. Up to the max-length bytes may be returned. If more
than one message arrives prior to RECEIVE, it is up to the user to determine where
one message ends and next message starts. For example the demo uses a 4 byte
message length prefix to determine each message length. Another option for client
server applications passing ASCII text could be the ending line feed character (hex
x’0A’). The TCPIO service itself is not sensitive to any special characters and all
byte values are allowed anywhere in messages. Note more than one RECEIVE
operation may be required to retrieve an entire logical message since the TCP/IP
network may not transfer the entire message in one packet on the network and a
portion of the logical message may be ready whereas the next RECEIVE may have
to wait for the next part of the message.

If any TCPIO operation fails for any reason on the client or server, a non-zero
return code is returned. For examples of how to use this new macro service, see the
SOA generated client and server message managers (soa\demo\democmgr.prn and
soa\demo\demosmgr.prn). If the TRACE and CON options are specified on the
execution of the demo batch command soa\demo\DEMOSOA.BAT, then the
generated client and server message managers will display trace of all instructions
including additional trace information on each TCPIO svc plus memory snap dump
of each message sent and received. The option TRACET can be specified for just a
log of all TCPIO events including connections and disconnects plus any errors.
Note there are two separate logs for the client and server when running the demo
SOA application. The server must be closed normally to see the generated log file.
The utility DEMOSTOP.MLC can be assembled, linked, and executed to shut down
the demo server by running soa\demo\demostop. The shut down server function is
triggered by sending a message from the client with -1 length in the first 4 bytes of
message. All other messages in the demo have 4 byte length of message in the first 4
bytes so the server and client can read variable length messages up to the size of the
maximum message buffer length calculated during the SOA application generation.
The client and server generate code to issue multiple TCPIO receives to retrieve an
entire variable length message whenever only a partial message is received which
can occur when the TCP/IP network is busy or under stress.

The TCPIO server port support includes multiple threads to support concurrent
connections. There is one thread for each open server port which waits for new
connections on the server port, starts new connection thread, and then returns to
wait for another connection. Each connection thread waits for any current
available messages to be read from that connection input buffer by the main TPCIO

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

user thread. When all messages have been retrieved, then the connection thread
issues a connection client socket read for first byte of the next input message. The
connection thread will wait for the next message to arrive in the input buffer or for
a disconnect. If a disconnect occurs, the connection thread is cancelled. If a
pending RECEIVE is waiting on the connection which disconnected, a return code
of 12 is returned. If the read of first byte is successful the thread returns to wait for
the main TCPIO user thread to retrieve the full or partial message available in the
connection input buffer. Since partial messages can arrive from multiple
connections in any sequence, the server must be sure to retrieve a complete message
from a specific connection prior to returning to non specific RECEIVE for the next
message.

See the z390 SOA Client Server Overview slides available on www.z390.org for
diagram and sample code for single client server plus diagrams for single server
with multiple clients and a diagram with multiple servers and multiple clients.

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

3. z390 SOA application generation support

The z390 SOA application generation macro SOAGEN can be used to generate
customized client and server message managers plus stubs for each service called by
the client application. In addition the SOAGEN macro generates two batch
commands to build the SOA application and to execute the client server SOA
application. The SOAGEN macro uses the z390 PUNCH extension operands
DSNAME= and FORMAT to generate 3 or more source MLC files plus the two
BAT files in one macro expansion execution. The keyword parameters on the
SOAGEN macro call are as follows:

1. MAIN= - name of main client program. If specified, an assembly and link of
the main program with the generated service call stubs will be generated.

2. CTYPE=MLC/CBL define language type for client. COBOL clients
generate IBM standard EZASOKET calls to TCP/IP to connect to services.

3. CLIENT= - name of the generated client message manager called from stubs.
4. SERVER= - name of the generated service message manager which loads

and calls services based on service request messages.
5. HOST= - IP address of server host processor or * for local processor
6. PORT= - port # for this application (must be greater than 1023)
7. SERVICES= - one or more sublists defining the name of each called service

and the length of each parameter being passed to service. If the length is
negative, that indicates the parameter is read only and the updated
parameter will not be returned in response message.

8. MACDIR= – directory containing the SOAGEN macros
9. GENDIR= – directory to contain the generated source files and command

files
10. GENBLD= - name of the generated build command file
11. GENRUN= - name of the generated run command file

The client message manager is generated using a call to the SOACMGR macro with
the required parameters from the SOAGEN macro call. The client message
manager performs the following functions when called from a client source call
stub:

1. On first call, dynamically allocate the required message buffer based on the
maximum service message required.

2. On first call open a TCP/IP socket connection to the server message manager
using the port and IP address specified.

3. Build a send message with message length, time stamp, service name, and all
the parameters required by the service. Note the service can only access the
parameters passed with the length specified. If a service needs to access
additional parameters such as control blocks in memory, they need to all be
passed to the service.

4. Send the message from client to server message manager using specified port

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

5. Wait for response from the server with matching time stamp and service
name plus updated parameters, and return code from service. Note the
generated client message manager has logic to issue more than 1 RECEIVE
to fetch the entire variable length response message if necessary.

6. Move the returned updated parameters to the original calling list addresses.
7. exit to calling stub which exits to the calling client main application program.

The server message manager is generated using a call to the SOASMGR macro with
the required parameters from the SOAGEN macro call. The server message
manager performs the following functions:

1. Opens server socket for specified port which starts thread which listens for
new connections from clients and starts new connection threads as required.
The server port and listens for incoming messages from clients.

2. Issues receive on the server port to receive all or part of a message from a
client on an open connection. The server logic fetches at least 4 bytes and
uses the message length in the first 4 bytes to determine how many bytes
must be read to complete the variable length message which may require
additional receive commands.

3. Look up the service name specified. If service not found, an error is
generated on server log and server returns to get next message.

4. Build call parameter address less pointing to the parameters in the received
message. Note this implies that all updates by the service will be made to
parameter areas in the message buffer.

5. Load the service on the first call and save entry address.
6. Call the service to update parameters in the message buffer.
7. Store the service return code in the message buffer.
8. Build return message truncated to just the updated parameters as indicated

by positive lengths in the SOAGEN SERVICES parameter.
9. Send response message back to client message manager using same

connection as request message.
10. Return to wait for next service request message from any client connection.
11. If client disconnect occurs, the disconnect is logged and server returns to wait

for next request message from any other client connections.

Stubs for each service name called by the client application are generated using calls
to the macro SOASTUB. The functions performed by the generated stubs are:

1. On first call load the client message manager and save address.
2. Call the client message manager passing the name of the service and the

calling parameter list.
3. Upon return, exit to caller with return code.

If the GENBLD parameter specifies a name, then the SOAGEN macro will generate
a batch command file which assembles each of the above source programs to create
an executable SOA type client server application. If the GENRUN parameter

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

specifies a name, then the SOAGEN macro will generate a batch command to start
the named SOA server message manager on the same processor, and then run the
client application. If the HOST parameter specifies a different processor, the
generated server message manager will need to be copied to that processor and
started prior to running the client application.

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

4. Demo SOA application

z390 SOA support includes a demo SOA application in the directory SOA\DEMO
consisting of a main program DEMOMAIN.MLC which calls two subroutines
DEMOSUB1.MLC and DEMOSUB2.MLC. The first subroutine calculates the sum
of two numbers using extended decimal floating point, and the second subroutine
adds two integer numbers. As a base line, the demo application can be assembled,
statically linked, and executed using the command soa\demo\demostd.bat. See
appendix II for the DEMOMAIN.LOG listing showing the results of static calls to
each of the two subroutines 5 times including elapsed time measurements.

The same demo application can be generated as an SOA client server application
using the command soa\demo\demosoa.bat. See III and IV for DEMOMAIN.LOG
and DEMOSMGR .LOG showing the demo client and server logs. Note the
difference in calculated end to end service response times and the fact that WTO
messages from the services appear on the DEMOSMGR log instead of the
DEMOMAIN log. Response time comparisons for the demo application when run
on same processor, two processors on local LAN, and two processors on wireless
LAN are summarized in Appendix V.

The soa\demo\demosoa.bat command executes the user defined SOAGEN macro
call defined in soa\demo\demosoa.mlc:

 SOAGEN MAIN=DEMOMAIN, MAIN CLIENT APPLICATION PGM X
 CLIENT=DEMOCMGR, SOA CLIENT MSG MGR NAME X
 SERVER=DEMOSMGR, SOA SERVER MSG MGR NAME X
 HOST=*, (192.168.1.3) HOST SERVER NAME (*=LOCAL) X
 PORT=3900, HOST SERVER PORT X
 SERVICES=((DEMOSUB1,-45,-45,45), SERVICES WITH PARM LENX
 (DEMOSUB2,-4,-4,4)), (NOTE -LENGTH FOR READ ONLY) X
 MACDIR=D:\WORK\Z390\SOA\MACLIB, SOA GEN MACRO DIRECTORYX
 GENDIR=D:\WORK\Z390\SOA\DEMO, DIRECTORY FOR SOA APPL X
 GENBLD=DEMOBLD, GENERATED BUILD BAT FILE X
 GENRUN=DEMORUN GENERATED RUN BAT FILE
 END

The above SOA application generation macro call generates server
message manager DEMOSMGR to run on the same host as client using
HOST=*. To generate the same application to run server on a specific
host, change the HOST= parameter to specify the IP address of the
desired server. The IP address of any windows PC can be viewed by type
IPCONFIG from the command prompt. The same client application
generated with a specific host and port, can be run on the same
processor or any processor on the same network as the server including
networks connected via VPN connections over the Internet.

The above SOAGEN macro call generates the following source files in the
soa\demo directory using z390 PUNCH extended operands DSNAME= and
FORMAT to control PUNCH output files:

1. DEMOCMGR.MLC – source macro call to SOACMGR to generate SOA
client message manager for the demo application.

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

2. DEMOSMGR.MLC – source macro call to SOASMGR to generate SOA
server message manager for the demo application.

3. SOA_STUB_DEMOSUB1.MLC - source macro call to SOASTUB to generate
SOA stub for DEMOSUB1 service call.

4. SOA_STUB_DEMOSUB2.MLC – source macro call to SOASTUB to generate
SOA stub for DEMOSUB2 service call.

5. DEMOBLD.BAT – generated command file to build the SOA demo
application.

6. DEMORUN.BAT – generated command file to start the DEMOSMGR server
on the same processor and then run the DEMOMAIN client
application.

The DEMOBLD.BAT command file assembles and links the following
executable client server programs:

1. DEMOCMGR.390 – client message manager
2. DEMOSMGR.390 – server message manager
3. DEMOMAIN.390 – main application program statically linked with the two

stubs assembled from above stub source code.
4. DEMOSUB1.390 – service loaded and executed by DEMOSMGR when

requested via message from DEMOCMGR.
5. DEMOSUB2.390 – service loaded and executed by DEMOSMGR when

requested via message from DEMOCMGR.

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

4. References:

 SOA
o IBM - Migrating to SOA
o JavaWorld definition of XML based SOA architecture
o Microsoft SOA
o Software Developers Introduction to SOA
o Sun SOA and Web Services

 TCP/IP
o TCP/IP Transmission Control Protocol RFP
o Sockets Tutorial
o J2SE ServerSocket Class
o J2SE Socket Class

 Host IP Addressing
o J2SE InetAddress Class
o IP Addressing RFC

 Socket Ports
o Choosing a Socket Port
o Registered Ports
o Register a Port

For latest z390 downloads and additional information visit www.z390.org

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

5. Appendix

Appendix I: Demo application source code

* Copyright 2006 Automated Software Tools Corporation *
* This source code is part of z390 assembler/emulator package *
* The z390 package is distributed under GNU general public license *
* Author - Don Higgins *
* Date - 12/26/06 *

* 12/31/06 RPI 523 CODE DEMOMAIN CALLING DEMOSUB1/DEMOSUB2
* 01/08/07 RPI 523 ADD TIMING IN MICRO-SEC AND PERFORM TWICE

* 1. DEMOMAIN CALLS DEMOSUB1 TO CALCULATE AND DISPLAY SUM OF 2
* DISPLAY SCIENTIFIC NOTATION VALUES USING CFD AND CTD MACROS.
* FOR CONVERSION TO/FROM LD EXTENDED DFP FORMAT FOR ADDITION
* 2. DEMOMAIN CALLS DEMOSUB2 TO CALCULATE AND DISPLAY SUM OF 2
* INTEGER VALUES.
* 3. RUN SOA\DEMO\DEMOSTD.BAT TO ASSEMBLE, STATICALLY LINK, AND
* EXECUTE DEMO APPLICATION AS STANDARD LOCAL SINGLE PROCESS.
* 4. RUN SOA\DEMO\DEMOSOA.BAT TO GENERATED, ASSEMBLE, LINK, AND
* EXECUTE DEMO APPLICAITON USING SOA CLIENT SERVER TO ALLOW
* RUNNING THE TWO CALLED SUBROUTINES AS SERVICES RUNNING ON
* SEPARATE PROCESS ON SAME OR ANY TCP/IP CONNECTED PLATFORM.

 COPY ASMMSP
DEMOMAIN SUBENTRY
 WTO 'DEMOMAIN SERVICE ORIENTED ARCHITECTURE APPLICATION'
 ZAP COUNT,=P'5'
 DO WHILE=(SP,COUNT,P,=P'0')
 BAL R12,START_TIME
 CALL DEMOSUB1,(DFP1,DFP2,DFP3),VL
 MVC DSUM1,DFP3
 WTO MF=(E,WTOMSG1)
 BAL R12,STOP_TIME
 IF (CLC,DFP3,NE,DFP4)
 WTO 'DEMOMAIN DEMOSUB1 DFP SUM INVALID - ABORTING'
 ABEND 111
 ENDIF
 BAL R12,START_TIME
 CALL DEMOSUB2,(INT1,INT2,INT3),VL
 L R0,INT3
 CVD R0,PWORK
 MVC DSUM2,MASK2
 ED DSUM2,PWORK+4
 WTO MF=(E,WTOMSG2)
 BAL R12,STOP_TIME
 IF (CLC,INT3,NE,INT4)
 WTO 'DEMOMAIN DEMOSUB2 INT SUM INVALID - ABORTING'
 ABEND 111
 ENDIF
 SP COUNT,=P'1'
 ENDDO
 WTO 'DEMOMAIN ENDED OK'
 SUBEXIT

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

START_TIME DS 0H
 TIME NS,NS_START
 BR R12
STOP_TIME DS 0H SHOW SRERVICE TIME IN MICRO-SECONDS
 TIME NS,NS_STOP
 LG R1,NS_STOP
 SG R1,NS_START
 DSG R0,=FD'1000'
 CVD R1,PWORK
 MVC DMICS,MICS_MASK
 ED DMICS,PWORK+3
 WTO MF=(E,SHOW_MSG)
 BR R12
NS_START DC D'0' START TOD IN NANO-SECONDS
NS_STOP DC D'0' END TOD IN NANO-SECONDS
SHOW_MSG DC AL2(SHOW_END-*,0),C'SERVICE TIME IN MIRCO-SEC ='
DMICS DC C' ZZZ,ZZZ,ZZZ'
SHOW_END EQU *
MICS_MASK DC X'40202020',C',',X'202020',C',',X'202120'
 LTORG
COUNT DC PL4'0'
WTOMSG1 DC AL2(WTOEND1-*,0),C'DEMOMAIN DEMOSUB1 DFP SUM='
DSUM1 DC CL45' '
WTOEND1 EQU *
WTOMSG2 DC AL2(WTOEND2-*,0),C'DEMOMAIN DEMOSUB2 INT SUM='
DSUM2 DC C' Z,ZZZ,ZZZ'
WTOEND2 EQU *
MASK2 DC C' ',X'20',C',',X'202020',C',',X'202120'
PWORK DC PL8'0'
DFP1 DC CL45'1.1'
DFP2 DC CL45'2.2'
DFP3 DC CL45' '
DFP4 DC CL45'3.3' VERIFY SUM VALUE
INT1 DC F'1'
INT2 DC F'2'
INT3 DC F'0'
INT4 DC F'3'
 EQUREGS
 END

* Copyright 2006 Automated Software Tools Corporation *
* This source code is part of z390 assembler/emulator package *
* The z390 package is distributed under GNU general public license *
* Author - Don Higgins *
* Date - 12/26/06 *

* 12/31/06 RPI 523 CODE EXAMPLE APPLICATION DEMOSUB1 ROUTINE

* CALC SCIENTIFIC DISPLAY PARM1 + PARM2 = PARM3 USING EXTENDED DFP

DEMOSUB1 SUBENTRY
 LM R3,R5,0(R1 LOAD 3 PARM ADDRESSES
 WTO 'DEMOSUB1 ENTERED'
 CFD CFD_LD,IN=(R3),OUT=0 F0,R2 = LD PARM1
 CFD CFD_LD,IN=(R4),OUT=1 F1,R3 = LD PARM2
 AXTR 0,0,1 F0,R2 = LD PARM1 + LD PARM2

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

 CTD CTD_LD,IN=0,OUT=DSUB DISPLAY VALUE OF SUB
 WTO MF=(E,WTOMSG) DISPLAY PARM3 = LD PARM1 + LD PARM2
 MVC 0(L'DSUB,R5),DSUB UPDATE PARM3 FROM DSUB
 WTO 'DEMOSUB1 EXITING'
 SUBEXIT
WTOMSG DC AL2(WTOEND-*,0),C'DEMOSUB1 SUM='
DSUB DC CL45' '
WTOEND EQU *
 EQUREGS
 END

* Copyright 2006 Automated Software Tools Corporation *
* This source code is part of z390 assembler/emulator package *
* The z390 package is distributed under GNU general public license *
* Author - Don Higgins *
* Date - 12/26/06 *

* 12/31/06 RPI 523 CODE EXAMPLE APPLICATION CALLED DEMOSUB2 ROUTINE

* CALC INT PARM1 + INT PARM2 = INT PARM3

DEMOSUB2 SUBENTRY

 LM R3,R5,0(R1) GET 3 PARM ADDRESSES
 WTO 'DEMOSUB2 ENTERED'
 L R0,0(R3) LOAD INT PARM1
 A R0,0(R4) ADD INT PARM2
 ST R0,0(R5) STORE INT PARM3
 CVD R0,PWORK
 MVC DSUM,MASK
 ED DSUM,PWORK+4
 WTO MF=(E,WTOMSG) DISPLAY PARM3 = INT PARM1 + INT PARM2
 WTO 'DEMOSUB2 EXITING'
 SUBEXIT
WTOMSG DC AL2(WTOEND-*,0),C'DEMOSUB2 SUM='
DSUM DC C' Z,ZZZ,ZZ9'
WTOEND EQU *
MASK DC C' ',X'20',C',',X'202020',C',',X'202120'
PWORK DC PL8'0'
 EQUREGS
 END

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

Appendix II: Demo application execution log for statically linked base line

EZ390I V1.3.02 Current Date 03/05/07 Time 09:18:28
EZ390I Copyright 2006 Automated Software Tools Corporation
EZ390I z390 is licensed under GNU General Public License
EZ390I program = DEMOMAIN
EZ390I options =
DEMOMAIN SERVICE ORIENTED ARCHITECTURE APPLICATION
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 3,009
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 1,224
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 3,717
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 1,683
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 3,412
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 1,340
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 8,581
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 869
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 9,103
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 786
DEMOMAIN ENDED OK
EZ390I Stats total instructions = 584
EZ390I Stats current date 03/05/07 time 09:18:28
EZ390I Stats total seconds = 0
EZ390I Stats instructions/sec = 6212
EZ390I total errors = 0
EZ390I return code(DEMOMAIN)= 0

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

Appendix III: Demo SOA client application execution log

EZ390I V1.3.02 Current Date 03/05/07 Time 09:26:04
EZ390I Copyright 2006 Automated Software Tools Corporation
EZ390I z390 is licensed under GNU General Public License
EZ390I program = DEMOMAIN
EZ390I options =
DEMOMAIN SERVICE ORIENTED ARCHITECTURE APPLICATION
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 117,273
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 7,243
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 7,037
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 4,827
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 15,476
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 5,733
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 7,031
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 3,563
DEMOMAIN DEMOSUB1 DFP SUM=3.3
SERVICE TIME IN MIRCO-SEC = 3,883
DEMOMAIN DEMOSUB2 INT SUM= 3
SERVICE TIME IN MIRCO-SEC = 3,918
DEMOMAIN ENDED OK
EZ390I Stats total instructions = 1409
EZ390I Stats current date 03/05/07 time 09:26:04
EZ390I Stats total seconds = 0
EZ390I Stats instructions/sec = 6906
EZ390I total errors = 0
EZ390I return code(DEMOMAIN)= 0

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

Appendix IV: Demo SOA server application execution log

EZ390I V1.3.02 Current Date 03/05/07 Time 09:26:00
EZ390I Copyright 2006 Automated Software Tools Corporation
EZ390I z390 is licensed under GNU General Public License
EZ390I program = DEMOSMGR
EZ390I options =
DEMOSMGR STARTED
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
SERVICE TIME IN MIRCO-SEC = 2,881
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
SERVICE TIME IN MIRCO-SEC = 2,521
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
SERVICE TIME IN MIRCO-SEC = 3,489
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
SERVICE TIME IN MIRCO-SEC = 1,885
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
SERVICE TIME IN MIRCO-SEC = 12,218
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
SERVICE TIME IN MIRCO-SEC = 1,757
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
SERVICE TIME IN MIRCO-SEC = 4,042
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3
DEMOSUB2 EXITING
SERVICE TIME IN MIRCO-SEC = 1,191
DEMOSUB1 ENTERED
DEMOSUB1 SUM=3.3
DEMOSUB1 EXITING
SERVICE TIME IN MIRCO-SEC = 1,726
DEMOSUB2 ENTERED
DEMOSUB2 SUM= 3

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

DEMOSUB2 EXITING
SERVICE TIME IN MIRCO-SEC = 1,184
TCPIO disconnect during read for conn=0 port=3900
DEMOSMGR TERMINATING AT USER REQUEST
EZ390I Stats total instructions = 1208
EZ390I Stats current date 03/05/07 time 09:26:06
EZ390I Stats total seconds = 6
EZ390I Stats instructions/sec = 197
EZ390I total errors = 0
EZ390I return code(DEMOSMGR)= 0

Copyright 2011 Automated Software Tools Corporation
z390 Licensed under General Public License

Appendix V: z390 Demo SOA Application Timing Statistics

Z390 Service Oriented Architecture Demo Timings in milli-seconds as of v1.3.02

Event Static Link Single CPU LAN Wireless LAN

Initialize server 0 120 120 120
Initialize connection 0 40 40 40
DEMOSUB1 service
time 2 2 2 2
DEMOSUB1 total time 2.2 5 5 5
DEMOSUB2 service
time 1.5 1.5 1.5 1.5
DEMOSUB2 total time 1.7 3 5 5

Conclusions:
1. Static linking will always be faster, but makes sharing services more difficult.
2. For SOA TCP/IP messaging the average overhead is about 2-3 milli-seconds.
3. The major advantage of SOA is that services can be easily shared and maintained.

Notes:
1. Initialize server time occurs on first call to service after startup and includes loading services.
2. Initialization connection time only occurs on first call after starting client to establish
connection.
3. Service time is the time to execute service on the server as measured by DEMOSMGR.MLC
4. Total time is end to end average time excluding first as measured by DEMOMAIN..MLC
5. Single CPU timings are for both client and server running on same 3.0 GHZ Dell PC
6. 100 MB LAN timing is for client on one PC and server on anther PC on same 100 MB LAN
7. Wireless LAN timing is for client on PC Laptop connected to LAN server via wireless router.
8. No changes were made to programs generated by
SOA\DEMO\DEMOSOA.BAT.
9. It may be necessary to add IP address of client to server security system like Norton NIS.
10. There is no security provided with z390 SOA applications current so they should only be run
on private secure networks or via VPN connections over the Internet.

