
ZSTRDOC.TXT
ZSTRMAC STRUCTURED MACRO DOCUMENTATION

12/30/78 DSH ORIGINAL DOCUMENTATION 
05/16/06 DSH UPDATED FOR Z390 COMPATIBILITY WITH IBM TOOLKIT MACROS                 
   

TABLE OF CONTENTS                                                         
                                                                          
  SECTIONS                                                                
                                                                          
  1. INTRODUCTION TO STRUCTURED PROGRAMMING AIDS.                         
  2. INTRODUCTION TO STRUCTURED MACRO ASSEMBLER.                          
  3. GUIDE TO STRUCTURED MACROS.                                          
  4. SUMMARY OF STRUCTURED MACROS.                                        
  5. SYNTAX AND EXAMPLES OF EACH STRUCTURED MACRO.                        
                                                                          
INTRODUCTION TO STRUCTURED PROGRAMMING AIDS.                              
                                                                          
STRUCTURED PROGRAMMING IS THE GENERAL TERM APPLIED TO A NUMBER       
OF TECHNIQUES WHICH AID IN DEVELOPING PROGRAMS WHICH ARE EASIER       
TO READ, EASIER TO DEBUG, EASIER TO MAINTAIN AND WHICH ARE GENERALLY      
MUCH MORE RELIABLE.                                                       

STRUCTURED PROGRAMMING TOOLS DOCUMENTED HERE CONSIST OF THE      
EXTENDED CONTROL STRUCTURES NECESSARY TO WRITE TOP DOWN PROGRAMS          
WITH NO UNCONDITIONAL BRANCHES. THREE BASIC TYPES OF CONTROL              
STRUCTURES ARE IMPLIMENTED:                                               
                                                                          
     1.  SEQUENTIAL CONCATENATION OF BLOCKS OF CODE.                      
     2.  SELECTION  BETWEEN TWO OR MORE BLOCKS OF CODE.                   
     3.  REPETITION OF A BLOCK OF CODE.                                   
                                                                          
FOR MORE INFORMATION ON THE THEORY OF STRUCTURED PROGRAMMING, SEE    
THE FOLLOWING REFERENCES.                                                 
                                                                          
         DAHL, O. J., DIJKSTRA, E. W., HOARE, C. A. R., "STRUCTURED       
         PROGRAMMING", ACADEMIC PRESS, LONDON (1972).                     
                                                                          
         HIGGINS, D. S., "A STRUCTURED FORTRAN TRANSLATOR", ACM           
         SIGPLAN, FEBRUARY (1975).                                        
                                                                          
         STEVENS, W. P., MYERS, G. J., CONSTANTINE, L. L., "STRUCTURED    
         DESIGN", IBM SYSTEM JOURNAL 13, 2 (1974).                        
                                                                          
         WEINBERG, G. M., "THE PSYCHOLOGY OF COMPUTER PORGRAMMING",       
         VAN NOSTRAND REINHOLD, NEW YORK (1971).                          
                                                                          
         YOURDON, EDWARD, "A BRIEF LOOK AT STRUCTURED PROGRAMMING         
         AND TOP DOWN PROGRAM DESIGN", MODERN DATA, JUNE (1974).          
                                                                          
INTRODUCTION TO ZSTRMAC STRUCTURED ASSEMBLER MACROS                           
                                                                          
THE ZSTRMAC STRUCTURED ASSEMBLER MACROS ALLOW ALC PROGRAMS TO BE 
WRITTEN IN A TOP DOWN STRUCTURED FORM WITHOUT THE NEED FOR ANY 
UNCONDITIONAL BRANCHES.                                                             
   
                                                                          
THE MACROS PROVIDE THE BASIC CONTROL STRUCTURES FOR ITERATION
AND ALTERNATIVE SELECTION WITH A MINIMUM OF OVERHEAD AND 
FUNCTIONAL RESTRICTIONS.  

THE DO WHILE=, DO UNTIL= AND ENDOD MACROS PROVIDE FOR ITERNATION LOOPS.

Page 1



ZSTRDOC.TXT
THE IF, ELSEIF, ELSE, AND ENDIF CONTROL MACROS PROVIDE FOR ALTERNATE
SELECTION WITH COMPLEX TESTS.  AND THE SELECT, WHEN, OTHERWISE, AND 
ENDSELECT MACROS PROVIDE FOR SELECTION OF MUTUALLY EXCLUSIVE 
ALTERNATIVES.

THE MACROS USE GLOBAL ARRAYS TO KEEP TRACK OF THE CURRENT LEVEL OF        
NESTING AND ANY REQUIRED GENERATED LABELS USED BY MULTIPLE MACROS         
WITHIN A CONTROL STRUCTURE.                                               
                                                                          
GUIDE TO USING FPC STRUCTURED MACRO ASSEMBLER.                            
                                                                          
TO USE THE ZSTRMAC MACROS IN A Z390 ASSEMBLER PROGRAM, INCLUDE
THE FOLLOWING COPY STATEMENT AT THE BEGINNING OF THE PROGRAM:

 COPY ASMMSP

TO ASSEMBLE, LINK, AND EXECUTE THE DEMO\DEMOSTR1 EXAMPLE PROGRAM USING 
THE ZSTRMAC MACROS, USE THE FOLLOWING COMMAND FROM Z390 COMMAND LINE:

ASMLG DEMO\DEMOSTR1 SYSMAC(MAC+ZSTRMAC) SYSCPY(MAC+ZSTRMAC)

THE DEMOSTR1.MLC PROGRAM ILLUSTRATES USE OF DO WHILE, DO UNTIL,
AND IF, ELSEIF, ELSE, ENDIF STRUCTURES WITHOUT USING ANY REGISTERS.
THE PROGRAM HAS PRINT NOGEN AT THE BEGINNING SO THE PRN LISTING IS
NOT CLUTTERED WITH ALL THE GENERATED CODE.  TO SEE THE GENERATED 
CODE LOOK AT THE GENERATED DEMOSTR1.BAL FILE OR COMMENT OUT THE 
PRINT NOGEN STATEMENT AND REASSEMBLE TO SEE THE GENERATED CODE
IN THE PRN LISTING.  THE EXECUTION LOG DEMOSTR1.LOG SHOWS THE WTO
STATEMENTS EXECUTED IN THE SELECTED BLOCKS.

SUMMARY OF STRUCTURED MACRO CONTROL STATEMENTS                            
                                                                          
SELECTION OF ONE BLOCK FROM TWO OR MORE BLOCKS OF CODE                    
                                                                          
  1.  IF (TEST)              - EXECUTE FOLLOWING BLOCK IF TEST IS         
                               TRUE OTHERWISE GO TO NEXT ELSEIF, ELSE,    
                               OR FI STATEMENT.                           
  2.  ELSEIF (TEST)          - SAME AS ABOVE TO SELECT ONE OF A NUMBER    
                               OF BLOCKS.                                 
  3.  ELSE                   - EXECUTE FOLLOWING BLOCK IF TEST            
                               IN PREVIOUS IF OR ELSEIF WAS FALSE.        
  4.  ENDIF                  - COMMON EXIT POINT FROM THE ABOVE CONTROL   
                               STRUCTURE.                                 
                                                                          
REPETITION OF A BLOCK OF CODE                                             
                                                                          
  1.  DO WHILE=(TEST)        - REPEAT BLOCK WHILE TEST IS TRUE            
                                                                          
  2.  DO UNTIL=(TEST)        - REPEAT BLOCK UNTIL TEST IS FALSE           
                                                                          
  3.  ENDDO                  - EXIT POINT FOR ANY OF THE ABOVE DO         
                               CONTROL STRUCTURES.                        

SYNTAX AND EXAMPLES

DO  UNTIL,(TEST)                                                          
                                                                          
FUNCTION - DEFINE BEGINNING OF BLOCK OF CODE WHICH IS EXECUTED            
           REPETITIVELY UNTIL THE TEST IS TRUE.  THE TEST                 
           IS PERFORMED AT THE END OF EACH EXECUTION OF THE BLOCK.        
                                                                          
SYNTAX   - SEE IF FOR TEST SYNTAX                                         
                                                                          

Page 2



ZSTRDOC.TXT
EXAMPLE -  DO UNTIL=(LTR,R1,Z,R1)                                        
              LR  R2,R1                                                   
              L   R1,NEXT(R1)                                             
           ENDDO 
           
                                                                    
DO WHILE=(TEST)                                                           
                                                                          
FUNCTION - DEFINE START OF BLOCK OF CODE WHICH WILL BE EXECUTED           
           REPETITIVELY WHILE THE EXPRESSION IS TRUE. THE TEST            
           IS PERFORMED BEFORE EACH EXECUTION OF THE BLOCK                
                                                                          
SYNTAX   - SEE IF FOR TEST SYNTAX                                         
                                                                          
EXAMPLE  - BRAS R12,GETREC                                                     
           DO  WHILE,(CLI,EOF,NE,TRUE)                                    
               BRAS R12,PROREC                                                 
               BRAS R12,GETREC                                                 
           OD                                                             
                                                                          
COMMENTS - THE ABOVE CONTROL STRUCTURE IS THE STANDARD FORM OF            
           MOST FILE PROCESSING MAIN PROGRAMS.  THE READ ROUTINE          
           NAMED GETREC SETS EOF=FALSE WHEN END OF FILE OCCURS.           
           THE ROUTINE NAMED PROREC PROCESSES RECORDS.                    

IF (TEST)                                                                 
                                                                          
FUNCTION - DEFINE BEGINNING OF BLOCK OF CODE TO BE EXECUTED IF            
           TEST IS TRUE.  IF THE TEST IS FALSE,                           
           TRANSFER CONTROL TO THE NEXT ELSEIF, ELSE, OR ENDIF            
           STATEMENT.  IF CONTROL STRUCTURES MAY BE NESTED.               
                                                                          
SYNTAX   - TEST CONSISTS OF 4 OPERANDS SEPARATED BY COMMAS WHICH     
           DEFINE INSTRUCTION, OPERAND 1, TEST CONDITION, AND OPERAND 2.            
           MULTIPLE TEST MAY BE CONNECTED BY LOGICAL AND/OR KEYWORD       
           CONNECTORS AS FOLLOWS:                                         
                                                                          
           IF (TEST),AND,(TEST),AND,(TEST),...                            
           IF (TEST),OR,(TEST),OR,(TEST),.....                            
                                                                          
           IF 'AND'/'OR' CONNECTORS ARE MIXED, IT IS INTERPRETED AS       
           IF THERE IS AN EXTRA SET OF PARENTHESIS ADDED AFTER EACH       
           CONNECTOR:                                                     
                                                                          
           IF (TEST),AND,(TEST),OR,(TEST) MEANS                           
                                                                          
           IF (TEST),AND,((TEST),OR,(TEST)) ETC.                          
                                                                          
           THE TEST CONDITION CODE VALUE MUST EQUATE TO 0-15 AND
           THE ZSTREQU.CPY MEMBER IS INCLUDED TO DEFINE     
           EQUATES FOR ALL THE POSSIBLE CONDITION CODE VALUES.         
                                                                          
           FOR EXAMPLE:                                                   
                                                                          
               IF (OP,OPR1,COND,OPR2)         OP OPR1,OPR2                
                                              BC 15-COND,TAGN             
                                                                          
               IF (SP,LINE,Z,=P'0')           SP LINE,=P'0'                         
  
                  BRAS  R12,HEADING           BC 15-8,TAGN                          
   
               FI                             BRAS R12,HEADING                      
     

Page 3



ZSTRDOC.TXT
                                         TAGN EQU *                                 
                                                                          
               IF (CLC,KEY,L,=F'10')                                          
                  BRAS R12,SMALL                                                   
               ELSEIF (CLC,KEY,L,=F'50')                                      
                  BRAS R12,MEDIUM                                                  
               ELSE                                                           
                  BRAS R12,BIG                                                     
               ENDIF                                                             

ELSE                                                                          
                                                                          
FUNCTION - DEFINE END OF BLOCK OF CODE EXECUTED IF PREVIOUS IF OR         
           ELSEIF IS TRUE AND DEFINE BEGINNING OF BLOCK OF CODE TO        
           BE EXECUTED IF ALL PREVIOUS IF AND ELSEIF STATEMENTS           
           WERE FALSE.                                                    
                                                                          
SYNTAX   - ALL KEYWORD                                                    
                                                                          
EXAMPLE  - SEE IF                                                         

                                                                                  
ELSEIF (TEST)                                                             
                                                                          
FUNCTION - DEFINE END OF BLOCK OF CODE EXECUTED IF PREVIOUS IF OR         
           ELSEIF IS TRUE AND DEFINE BEGINNING OF BLOCK OF CODE TO        
           BE EXECUTED IF EXPRESSION IS TRUE.                             
                                                                          
SYNTAX   - SEE IF FOR TEST SYNTAX                                         
                                                                          
EXAMPLE  - SEE IF                                                         

ENDIF                                                                        
                                                                          
FUNCTION - DEFINE END OF IF CONTROL STRUCTURE.                            
                                                                          
SYNTAX   - NONE                                                    
                                                                          
EXAMPLE  - SEE IF                                                         

Page 4


